TP VHDL N°1 L'outil Xilinx VIVADO

Lancement

Lancer VIVADO

Créer un nouveau projet

- 1. Cliquez sur « Create New Project ».
- 2. Cliquez sur « Next ».
- 3. Choisir le nom du projet « *Project name* » ainsi que son emplacement de sauvegarde « *Project Location* ».
- 4. Cliquez sur « Next ».
- 5. Sélectionner le « *Project Type* » : *RTL Project*.
- 6. Cliquez sur « *Next* ».
- 7. Cliquez sur « *Create File* » afin de créer le fichier qui contiendra la description VHDL que vous aller réaliser.
- 8. Dans la fenêtre indiquer le nom du fichier sans l'extension puis cliquez sur « *Ok* ».

new source file on disk	and add it to your project. You can also add and create sou	rces later.
Index Name	Library HDL Source For Location defaultlib Synthesis & Si ▼ <local th="" to<=""><th></th></local>	
[Add Files Add Directories Create f	ile
□ Scan and add RTL inclu	Add Files Add Directories Create f	ile
Scan and add RTL inclu □ Scan and add RTL inclu	<u>A</u> dd Files <u>C</u> reate I de files into project ct	ile
□ Scan and add RTL inclu □ Copy gources into proje ☑ Add sources from subd	<u>Add Files</u> <u>Add Directories</u> <u>C</u> reate f de files into project ct rectories	ile

9. Cliquez trois fois sur « Next ».

- 10. Vous devez maintenant sélectionner la carte/FPGA cible. Laissez pour l'instant la sélection par défaut puis cliquez sur « *Next* ».
- 11. La fenêtre « *New Project Summary* » vous indique le bilan de la configuration. Cliquez sur « *Finish* ».

Créer une source HDL

- 12. Vous devez maintenant définir les entrées et sorties de l' « *entity* » permettant de créer un MUX à 2 entrées.
- 13. Cliquez sur « *Ok* »
- 14. Vous devez maintenant avoir la fenêtre suivante :

15. Complétez l'architecture afin de réaliser la fonction MUX demandée.

Simulation

- 16. Il faut maintenant créer un *testbench* afin de simuler votre description. Dans le menu « *Files* » sélectionner « *Add source* ».
- 17. Sélectionner « Add or Create Simulation Source » puis cliquez sur « Next »
- 18. Cliquez sur « *Create File* » et nommez votre fichier exo1_tb puis cliquez sur « *Finish* ».
- 19. Dans la fenêtre permettant de créer les entrées et sorties, ne rien rajouter (un *testbench* est dépourvu d'entrée/sortie) puis cliquez sur « *Ok* ».
- 20. Editer le fichier *testbench* afin de décrire la simulation que vous souhaitez lancer

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity exo1_tb is
end exo1_tb;
architecture Behavioral of exol_tb is
 -- Component Declaration
component exola
port(
 A : in STD_LOGIC;
 B : in STD_LOGIC;
 COM : in STD LOGIC;
 S : OUT STD_LOGIC);
end component;
signal A, B, COM, S : STD_LOGIC;
begin
-- Component Instantiation
 c1 : exola port map(A, B, COM, S);
  tb : process
 begin
      A <= '0';
      B <= '0';
      COM <= '0';
      wait for 20ns;
     A <= '1';
B <= '0';
      COM <= '0';
      wait for 20ns;
      A <= '0';
      B <= '1';
      COM <= '1';
      wait for 20ns;
      A <= '1';
      B <= '1';
      COM <= '1';
      wait for 20ns;
   end process tb;
end Behavioral;
```

- 21. Afin de simuler le *testbench* il faut le définir comme un « *top module* ». Clic droit sur le fichier et sélectionner « *Set as Top* ».
- 22. Cliquez sur «*Run Simulation* » et Sélectionnez «*Run Behavioral Simulation* ». Vous devez obtenir la fenêtre de simulation suivante. Utiliser les options de zoom pour ajuster l'affichage et vérifier votre simulation.

Øħ	exol.vhd ×	🐠 exol_tb.v	hd ×	🗟 Untitled 5 🗙
¥∎				
	Name	Value	0 ns	
0+	₩a A	1	пп	inninninn
0-	Чав	1		
٩	🖫 сом	1		
<u>k</u>	₩a S	U		
◄				
1				
2				

Questions – Logique Combinatoire

Comparateur

- Réaliser et simuler une fonction réalisant la comparaison de deux nombres binaires de 4 bits. Trois sorties (actives à l'état haut) permettent de fournir le résultat de la comparaison :
 - o une sortie pour « supérieur »
 - o une sortie pour « inférieur »
 - $\circ \quad \text{une sortie pour } \ll \text{égal } \gg$

Additionneurs

- Réaliser et simuler un additionneur 8 bits avec retenue sortante. Réalisez cet additionneur de deux façons :
 - comportementale (en utilisant les librairies *IEEE.std_logic_arith.all* et *IEEE.std_logic_unsigned.all*)
 - \circ structurelle (en utilisant un bloc full adder 1 bit).
- Réaliser et simuler un additionneur/soustracteur (si com = 1 addition, si com = 0 soustraction) 8 bits avec retenue sortante.

Les Opérateurs et Délimiteurs

Délimiteurs	Nom	Exemple
+	Addition et positif	Somme := +5 + 10;
-	Soustraction et negatif	Différence := -7 - 9;
*	Multiplication	Mult := 7 * 9;
/	Division	Div := 10 / 2;
=	Égalité (comparaison)	If valeur = 5 then
<	Plus petit que	If somme < 6 then
>	Plus grand que	If diff > 7 then
&	Concaténation	Quatre_bits := Deux_bits & "10";
l.	Barre verticale (choix multiple)	When 'Y' 'y'
;	terminateur	Fin d'instruction
#	Délimitneur sz base	X := 16#AB34#; (en base 16)
()	Parenthèses (niveau de précédence)	Y := (5 + sum)*10;
:	Séparation d'un objet et de son type	Variable x : integer;
"	Délimiteur de chaîne	Report "message"
4	Séparateur d'attribut	X := Y`left;
**	Puissance	Z := 2 ** 3 égale 8.
=>	Dire "alors"	When val_1 \Rightarrow X := 5;
=>	Dire "prend"	Tableau := (Element1 => 5, autres => 100);
:=	Assignement d'une variable	X := 4 + 5;
/=	Inégalité (différent)	If $x \neq 5$ then
>=	Plus grand ou égal	If x >= 3 then
<=	Plus petit ou égal	If x <= 3 then
<=	Assignement d'un signal	Sortie <= 1 after 10 ns;
	Ligne de commentaires	